Toxicological Research : eISSN 2234-2753 / pISSN 1976-8257

Cited by CrossRef (7)

  1. Kyeong-Nam Yu, Sashi Nadanaciva, Payal Rana, Dong Woo Lee, Bosung Ku, Alexander D. Roth, Jonathan S. Dordick, Yvonne Will, Moo-Yeal Lee. Prediction of metabolism-induced hepatotoxicity on three-dimensional hepatic cell culture and enzyme microarrays. Arch Toxicol 2018;92:1295
    https://doi.org/10.1007/s00204-017-2126-3
  2. Clara Hartmanshenn, Megerle Scherholz, Ioannis P. Androulakis. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine. J Pharmacokinet Pharmacodyn 2016;43:481
    https://doi.org/10.1007/s10928-016-9492-y
  3. Jeremy A. Leonard, Yu-Mei Tan. Tiered approaches for screening and prioritizing chemicals through integration of pharmacokinetics and exposure information with in vitro dose-response data. Computational Toxicology 2019;12:100101
    https://doi.org/10.1016/j.comtox.2019.100101
  4. Ok-Nam Bae, Joo Young Lee. Shedding New Lights with the Breakthrough Ideas to Understand Current Trends in Modern Toxicology. ToxicolRes 2016;32:1
    https://doi.org/10.5487/TR.2016.32.1.001
  5. Yu-Mei Tan, Rachel R Worley, Jeremy A Leonard, Jeffrey W Fisher. Challenges Associated With Applying Physiologically Based Pharmacokinetic Modeling for Public Health Decision-Making. 2018;162:341
    https://doi.org/10.1093/toxsci/kfy010
  6. Jeffrey W. Fisher, Xiaoxia Yang, Charles Timchalk. Handbook of Developmental Neurotoxicology. 2018.
    https://doi.org/10.1016/B978-0-12-809405-1.00019-5
  7. Elaina M Kenyon, John C Lipscomb, Rex A Pegram, Barbara J George, Ronald N Hines. The Impact of Scaling Factor Variability on Risk-Relevant Pharmacokinetic Outcomes in Children: A Case Study Using Bromodichloromethane (BDCM). 2019;167:347
    https://doi.org/10.1093/toxsci/kfy236